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Introduction

The purpose is to find a satifactory extension in Polish Groups of the following
theorem :

Theorem (Steinhaus theorem). Let µ be a translation-invariant regular mea-
sure defined on the Borel sets of R, and A is a Borel measurable set with
µ(A) > 0, then 0 ∈ Int(A−A).

We just must find on which set we would apply the result. In fact it will be
on non generically left Haar-null sets. But what is a left Haar-null set ? Let’s
start with (a lot of) definitions.

1 Preliminaries

1.1 Polish group

Let’s start with some definition on Polish groups.

Definition (Polish space). A topological space X is said to be a Polish space
if it is separable and completely metrizable.

Definition (Polish group). A group G is said to be a Polish group if it is a
topological group which is also a Polish space.
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And let’s continue with definitions on meager.

Definition. A subset A of a topological space X is said to be meager if A is
covered by a countable union of closed nowhere dense sets.
A subset A of a topological space X is said to be co-meager if the complement
of A is meager.

1.2 Topological spaces

We will need to work with compacts. For any Polish space we denote by K(X)
the space of all compacts of X with the Vietoris topology. We consider the
Hausdorff metric dH on K(X) associated to d, defined by :

dH(K,C) = inf{ε > 0 / K ⊂ Cε and C ⊂ Kε},

where Aε = {x ∈ X/d(x,A) ≤ ε}. We denote

BH(K, r) = {C ∈ K(X) / dH(K,C) < r}.

We will say that a subset H of K(X) is said to be hereditary if for every
K ∈ H and every C ∈ K(X) with C ⊂ K then we have C ∈ H.

We will also need to use meeasures. For any Polish space X, we denote by
P (X) the space of all Borel probability measures on X with the weak* topology.
We consider the Lévy metric ρ, defined by :

ρ(µ, ν) = inf{ε > 0 / ∀A ∈ B(X), µ(A) ≤ ν(Aε) + ε and ν(A) ≤ µ(Aε) + ε}.

We denote
BP (µ, r) = {ν ∈ P (X) / ρ(µ, ν) < r}.

If G is a Polish group and µ, ν ∈ P (G), we denote by µ ∗ ν their convolution
product defined by :

µ ∗ ν(A) =
∫
G

µ(Ax−1)dν(x).

1.3 Haar-null sets

After the genral definitions, we are comming closer to Haar-null sets. Let’s just
define two sets :

Definition. Let G be a Polish group and A ⊂ X an universally measurable set.
We let :

T (A) = {µ ∈ P (G) / ∀g1, g2 ∈ G, µ(g1Ag2) = 0},
and

Tl(A) = {µ ∈ P (G) / ∀g ∈ G, µ(gA) = 0}.

And now, here are Haar-null sets :

Definition. Let G be a Polish group and A ⊂ X an universally measurable
set. A is said to be Haar-null if T (A) is not empty. A is said to be genericaly
Haar-null if T (A) is co-meager.

Definition. Let G be a Polish group and A ⊂ X an universally measurable set.
A is said to be left Haar-null if Tl(A) is not empty. A is said to be genericaly
left Haar-null if Tl(A) is co-meager.
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2 Hereditary, dense Gδ sets and measures

After all these definitions, we will be able to start extending the Steinhaus
theorem. Here comes the main theorem of the article, the one which will lead
to the extension of the Steinhaus theorem :

Theorem. Let G be an uncountable Polish group and let A be a universally
measurable subset of G. Assume that A−1A is meager. Then A is generically
left Haar-null.

It is the contraposed which will interess us to extend the Steinhaus theorem.
To prove this theorem, we will some steps. It will start we these three lemmas.

2.1 Preparation

From now, X will be a Polish space, d a compatible complete metric of X and
H a hereditary, dense Gδ subset of K(X).

Lemma 1. There exists a sequence (Un) of open, dense and hereditary subsets
of K(X) such that H =

⋂
n Un. We will say the sequence (Un) is a normal form

of H.

Proof. As H is a dense Gδ set, we can write H =
⋂
n Vn where each Vn is open

and dense but not necessarily hereditary. For every n we define :

Cn = {K ∈ K(X) / ∃C ⊂ K compact with C /∈ Vn}.

For every ∈ N, we have that Cn is closed and Cn∩H = ∅. We set Un = K(X)\Cn
and (Un) is the sequence desired.

This lemma gives us an information on the srtucture of H. The next one
will describe a bit how opens behave in K(X) :

Lemma 2. Let U ⊂ K(X) be open, dense and hereditary. Also let x0, . . . , xn
be disctinct points in X and r > 0. Then there exists y0, . . . , yn disctinct points
in X such that d(xi, yi) < r for all i ∈ {0, . . . , n} and {y0, . . . , yn} ∈ U .

Proof. We can suppose that B(xi, r)∩B(xj , r) = ∅ if i 6= j (if it’s not the case,
we just have to take a smaller r). Let

V =

{
K ∈ K(x) / K ⊂

n⋃
i=0

B(xi, r) and ∀i,K ∩B(xi, r) 6= ∅

}
.

We have that V is open, so there exists K ∈ V ∩U . For every i ∈ {0, . . . , n}, we
select yi ∈ K∩B(xi, r). We have that {y0, . . . , yn} ⊂ K ∈ U , so {y0, . . . , yn} ∈ U
and the yi are the one we were looking for.

Another Lemma linked to Lemma 2 and which leads directly to the key
proposition.

Lemma 3. Let U ⊂ K(X) be open, dense and hereditary. Also let ε > 0. Then
the set

GU,ε = {µ ∈ P (X) / ∃K ∈ U , µ(K) ≥ 1− ε}

is co-meager in P (X).
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Proof. We will show that for every V ⊂ P (X) open there exists W ⊂ V such
that W ⊂ GU,ε. This will show that GU,ε contains a dense open set and so that
it is co-meager. Let V ⊂ P (X) be an open set. As finitely supported measures
are dense in P (X), we can take ν =

∑n
i=0 aiδxi and r > 0 such that :

(1) ai > 0 and
∑n
i=0 ai = 1,

(2) BP (ν, r) ⊂ V .
The fact (1) just wants to say that ν is a probability measure, and the (2) comes
from the density. By Lemma 2, there exists y0, . . . , yn distinct points in X with
F = {y0, . . . , yn} ∈ U and d(xi, yi) < r

2 . We set µ =
∑n
i=0 aiδyi

and we have :
(3) ρ(µ, ν) ≤ r

2 .
As U is open, there exists θ > 0 such that :

(4) θ < min{ ε3 ,
r
3},

(5) BH(F, 2θ) ∈ U .
The fact (5) comes from F ∈ U and U is open and the (4) from the fact we
could take θ as smaller as we want. Let W = BP (µ, θ). By (2)-(4), we have
W ⊂ V . In fact, we have also that W ⊂ GU,ε which ends the proof.

We are now comming to the proposition which is the key in the proof of the
theorem.

Proposition 1. The set

GH = {µ ∈ P (X) / ∀ε > 0,∃K ∈ H, µ(K) ≥ 1− ε}

is co-meager in P (X).

Proof. Let (Un) be a normal form of H. For every n,m ∈ N, let

Gn,m =
{
µ ∈ P (X) / ∃K ∈ Un, µ(K) ≥ 1− 1

m+ 1

}
.

By Lemma 3, we have that Gn,m is co-meager. So
⋂
n,mGn,m is also co-meager.

It is clear that GH ⊂
⋂
n,mGn,m. In fact, we have that GH =

⋂
n,mGn,m.

2.2 The proof of the theorem

Theorem. Let G be an uncountable Polish group and let A be a universally
measurable subset of G. Assume that A−1A is meager. Then A is generically
left Haar-null.

Proof. We take a sequence Cn of closed nowhere dense sets such that :
(1) 1 /∈ Cn for all n ∈ N,
(2) A−1A ⊂

⋃
n Cn.

For all n ∈ N, we let :

Un = {K ∈ K(G) / K−1K ∩ Cn = ∅}.

It is clear that Un is hereditary. As the function f : K(G) → K(G) defined by
f(K) = K−1K is continuous, Un is open. In fact Un is also dense in K(G) for
every n ∈ N. Then we let

H =
⋂
n

Un
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which is a hereditary, dense Gδ subset of K(G) with (Un) as a normal form. Let

B1 = {µ ∈ P (G) / ∀ε > 0,∃K ∈ H, µ(K) ≥ 1− ε}

, it is co-meager in P (G), by Proposition 1. We admit the fact that the sets of
non atomic measures in P (G) is co-meager in P (G). So

B2 = {µ ∈ P (G) / µ is non-atomic and µ ∈ B1}

is also co-meager in P (G) (as intersection of two co-meager sets). And we have
that B2 ⊂ Tl(A) and Tl(A) is co-meager in P (G).

3 Consequences of the theorem

This theorem can give informations on analytic subgroups of Polish groups :

Definition. We say that a subset A of a Polish space X is analytic if there
exists a continuous map f : NN 7→ X with f(NN) = A.

Corollary 1. Let G be an uncountable Polish group and let H an analytic
subgroup of G with empty interior. Then H is generically left Haar-null.

It gives also the extension of the Steinhaus theorem we were looking for :

Corollary 2. Let G be an uncountable Polish group and let A be an analytic
subset of G. If A is not generically left Haar-null, then 1 ∈ Int(A−1AA−1A).

It is in fact a direct consequence of the theorem and Pettis’ lemma.

4 The Haar-null sets

We only talked about left Haar-null sets, but what about the Haar-null sets. In
fact, if we add a condition we have the same result that the theorem but with
T (A).This condition is the following :

(C) For every analytic and meager subset A of G, the conjugate saturation

[A] = {x ∈ G / ∃g ∈ G,∃a ∈ A, x = gag−1}

of A is meager.

Proposition 2. Let G be an uncountable Polish group that satisfies (C). If A
is an analytic subset of G such that A−1A is meager. Then A is generically
Haar-null.

The proof is similar to the proof of the theorem, we build a co-meager set
B2 of non-atomic probability measure on G. And we show that B2 ⊂ T (A).
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